Common Configuration Scoring System (CCSS)

Karen Scarfone Scarfone Cybersecurity

Acknowledgements

- Content based on NIST Interagency Report 7502, The Common Configuration Scoring System (CCSS), by Karen Scarfone and Peter Mell, NIST
- Some slides based on CVSS presentation by Gavin Reid, Cisco Systems

Agenda

- Overview of CCSS
- Base metrics and scores
- Base example
- Temporal and environmental metrics

Security Configuration Issues

- Settings—options for the security of operating systems and applications
 - □ Enable or disable encryption of stored passwords

Access control list for file privileges

Uninstalling unneeded software features

CCE version 5 examples

- CCE-2519-7 (Vista): "The amount of idle time required before disconnecting a session should be set correctly."
- CCE-4191-3 (RHEL 5): "The dhcp client service should be enabled or disabled as appropriate for each interface."

CCSS Overview

- Common Configuration Scoring System
- A universal way to convey the relative severity of security configuration choices
- A set of metrics and formulas
- Solves problem of incompatible scoring systems
- Open, usable, and understandable by anyone
- Based on CVSS version 2
 - CVSS = software flaw vulnerabilities
 - CCSS = software security configuration issues
- Not a risk assessment solution

Why CCSS?

- Many exploits performed by taking advantage of vulnerabilities other than software flaws
- Dozens or hundreds of security configuration elements in each operating system and many applications
- Understanding security implications of each configuration option allows better risk assessment and sound decision-making
- Metrics and formulas designed to be fully compatible with CVSS metrics and formulas

Why Not Use CVSS Instead?

- Identified two key differences in scoring software flaws and configuration settings
- Software flaws and some settings permit unauthorized actions; other settings prevent authorized actions (insufficient privileges, lack of auditing, etc.)

□ Have two classes of settings in CCSS

- Software flaws are universally bad, but many settings are environment-specific—no "correct" value
 - □ Often multiple scores possible per setting
 - Both positive and negative security implications

Agenda

- Overview of CCSS
- Base metrics and scores
- Base example
- Temporal and environmental metrics

Base Metric Group

- Most fundamental qualities of a vulnerability, also referred to as a "weakness"
- Does not change; intrinsic and immutable
- Represents general vulnerability severity
- Two subsets of metrics:
 - Exploitability: Access Vector, Authentication, Access Complexity, and Exploitation Method
 - Impact: Confidentiality, Integrity, Availability, and Privilege Level

Exploitation Method (EM)

- Active (A) exploitation of vulnerabilities that permit unauthorized actions to occur
 - Attacker gains access to sensitive file through overly permissive file privileges
- Passive (P) exploitation of vulnerabilities that prevent authorized actions
 - □ Authorized system service cannot run
 - □ Audit log records not generated for security events
- EM not used directly in generating CCSS scores

Access Vector (AV)

- For Active (A) exploitation, measures from where the vulnerability can be exploited
- Local (L): The vulnerability is only exploitable locally (physical access or local account)
- Adjacent Network (A): The attacker must have access to either the broadcast or collision domain of the vulnerable software
- Network (N): The vulnerable software is bound to the network stack and the attacker does not need local or adjacent network access to exploit it

Access Vector (AV) (cont.)

- For Passive (P) exploitation, measures from where authorized parties should be able to perform the prevented action
- Local (L): The vulnerability only affects local users, processes, services, etc.
- Adjacent Network (A): The vulnerability affects users or other hosts on the same broadcast or collision domain
- Network (N): The vulnerability affects all users or hosts

Authentication (Au)

- Measures the number of times an attacker must authenticate to a target once it has been accessed in order to exploit a vulnerability
- Multiple (M): Exploiting the vulnerability requires that the attacker authenticate two or more times (e.g., first OS, then application), even if the same credentials are used each time
- Single (S): One instance of authentication is required
- None (N): Authentication is not required to exploit the vulnerability

Access Complexity (AC)

- For Active (A) exploitation, measures the complexity of attack required to exploit the vulnerability once an attacker has access to the target host
- High (H): Specialized access conditions exist, such as the attacker already having elevated privileges, or the vulnerability only making it slightly easier for a subsequent attack to succeed
- Medium (M): The access conditions are somewhat specialized, such as only certain hosts or users being able to perform attacks, the affected configuration being uncommon, or some information gathering being required
- Low (L): Generally easy to exploit, such as the affected configuration being the default, and the attack requiring little skill or information gathering

Access Complexity (AC) (cont.)

- For Passive (P) exploitation, always set to Low
 (L)
- The outcome of the vulnerability, such as not permitting an authorized service to run or not logging security events, has already occurred or is constantly occurring
 - □ No additional actions are needed to "exploit" it

Exploitability Base Metrics

- Exploitation Method (EM) □ Active, Passive Access Vector (AV) Local, Adjacent Network, Network Access Complexity (AC) □ High, Medium, Low Authentication (Au)
 - □ Multiple, Single, None

CCSS

Confidentiality Impact (C)

- Measures the impact on confidentiality of a successfully exploited vulnerability
 Includes both information and resource access
- None (N): No impact on confidentiality
- Partial (P): Considerable informational disclosure, such as access to some files or certain database tables; or considerable (but not total) unauthorized access to the host
- Complete (C) : Total information disclosure; the attacker can read all of the host's data (including files and memory)

Integrity Impact (I)

- Measures the impact to integrity of a successfully exploited vulnerability
- None (N): No impact on integrity
- Partial (P): Modification of some system files or information; or, the vulnerability can be misused to alter the host's security configuration, such as placing malware-infected files on the host
- Complete (C): Total compromise of system integrity; the attacker can modify any data (files, memory, etc.) on the target host

Availability Impact (A)

- Measures the impact to availability of a successfully exploited vulnerability
- None (N): No impact on availability
- Partial (P): Reduced performance or interruptions in resource availability
- Complete (C): Total shutdown of the affected host
- Underlying assumption in all impact metrics of impact to the OS, not just a targeted application or service

Privilege Level (PL)

- The level of unauthorized access that an attacker could gain
 - For example, impersonating a user or gaining full access to an application or OS
 - □ Root Level (R)
 - □User Level (U)
 - □ Application Level (A)
 - □ Not Defined (ND)
- Does not directly affect base scores; used by environmental metrics

Base Metrics

- Confidentiality Impact (C), Integrity Impact (I), Availability Impact (A)
 - □ None, Partial, Complete
- Privilege Level (PL)

Root Level, User Level, Application Level, Not Defined

- Exploitation Method (EM)
- Access Vector (AV)
- Access Complexity (AC)
- Authentication (Au)

Base Scoring

- To be computed by vendors and coordinators
- Each metric has a number assigned to each possible value
 - \Box AccessComplexity: high = 0.35, medium = 0.61, low = 0.71
 - \Box Integrity: none = 0.0, partial = 0.275, complete = 0.66
- The metrics' values are combined with formulas that give different weights to the base metrics
- Base subscores for impact and exploitability
- The final base score is between 0.0 and 10.0
 60% of impact subscore + 40% of exploitability subscore
- All metric values and formulas the same as CVSS's

Base Vector

- A vector is a representation of the values assigned to the CCSS metrics
- Every CCSS score should be accompanied by the corresponding vector, so that people can see the components of the score and validate them
- CCSS base vector has the following form: (AV:[L,A,N]/AC:[H,M,L]/Au:[M,S,N]/C:[N,P,C]/ I:[N,P,C]/A:[N,P,C]/PL:[R,U,A,ND]/EM:[A,P])
- Sample vector: (AV:N/AC:L/Au:N/C:P/I:P/A:P/PL:ND/EM:A)
- Superset of CVSS vector format

Update Scores Res	et Scores <u>View Equations</u>
CVSS Base Score	7.5
Impact Subscore	6.4
Exploitability Sub	score 10
CVSS Temporal Sc	ore Undefined
CVSS Environment	al Score Undefined
Overall CVSS Scor	e 7.5
1915	

Base Score Metrics

Exploitability Metrics

AccessVector AccessComplexity Authentication

Impact Metrics

ConfImpact IntegImpact AvailImpact

Partial 💉 Partial 💉 Partial 💉

NVD CVSS Calculator can be used for CCSS base scores

Multiple Scores Per Vulnerability

- No universally "right" option for many configuration issues
- Some have only a few options, such as enabled/disabled or low/medium/high
 - Consider each combination of desired setting vs. actual setting that has security implications, and generate a score and vector for each
- Some have many options, such as ACLs
 - Consider the common cases independently
 - Example—for timeout, it could be set too high, set too low, or disabled
- Users have to select the appropriate scores and vectors for their environment and situation

Agenda

- Overview of CCSS
- Base metrics and scores
- Base example
- Temporal and environmental metrics

Example - CCE-2366-3

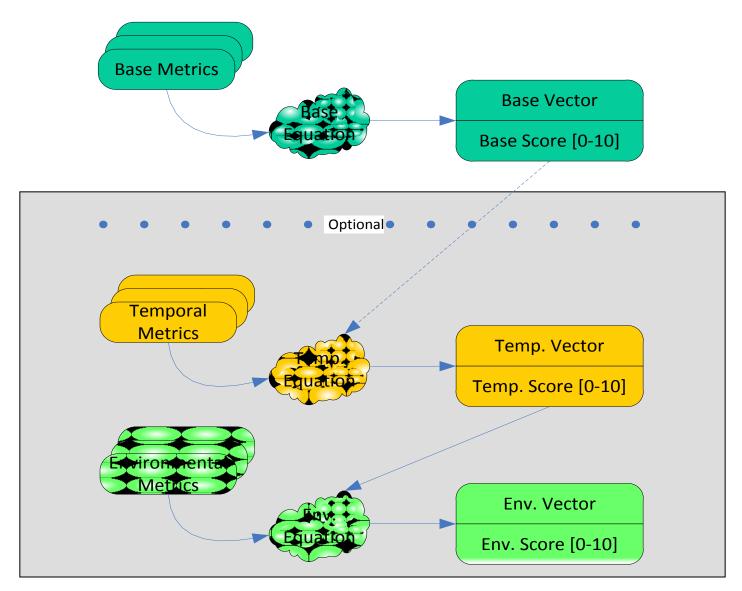
- CCE-2366-3 for Windows XP: "The 'shut down the system' user right should be assigned to the correct accounts."
- Do not know to whom the right has been granted
 Perhaps granted to some users that should not have it?
 Perhaps not granted to some users that should have it?

Example (cont.)

- For the case where users should not have the right but do...
 - Exploitation Method is set to "Active" because users have to perform particular actions to take advantage of this.
 - □ Since the vulnerability is exploitable only to a user locally logged into the host, the Access Vector is "Local".
 - Access Complexity is "Low" because a user could use features built into the OS to exploit the vulnerability.
 - Authentication is set to "None" because no additional authentication is needed after local login.
 - Availability Impact is set to "Complete" because the user can make the entire host unavailable at will.
 - Confidentiality Impact and Integrity Impact are both set to "None" because they are unaffected.
 - □ Privilege Level is set to "Not Defined".
 - Base score 4.9, vector AV:L/AC:L/Au:N/C:N/I:N/A:C/PL:ND/EM:A

Example (cont.)

- For the case where users should have the right but do not...
 - Exploitation Method is set to "Passive" because users do not have to perform particular actions to be affected.
 - Since the vulnerability is exploitable only to a user locally logged into the host, the Access Vector is "Local".
 - □ Access Complexity is "Low" because EM is Passive.
 - Authentication is set to "None" because no additional authentication is needed after local login.
 - Availability Impact is set to "Partial" because a needed feature is unavailable to users.
 - Confidentiality Impact and Integrity Impact are both set to "None" because they are unaffected.
 - Privilege Level is set to "Not Defined".
 - Base score 2.1, vector AV:L/AC:L/Au:N/C:N/I:N/A:P/PL:ND/EM:P



Agenda

- Overview of CCSS
- Base metrics and scores
- Base example
- Temporal and environmental metrics

CCSS Metrics and Scores

Temporal: General Exploit Level (GEL)

- Prevalence of attacks against the vulnerability—how often any vulnerable system is likely to come under attack
 - □ None (N) (no exploits yet observed)
 - Low (L) (rarely observed; months to years)
 Medium (M) (occasional; days)
 - High (H) (frequent; hours, minutes, or seconds)
 - Not Defined (ND) (skip this metric in calculating the score)

Temporal: General Remediation Level (GRL)

- Availability of remediation measures that can mitigate the vulnerability, other than changing the configuration setting or rendering it useless
 - High (H) (remediations can collectively decrease exploitation by 76-100%)
 - Medium (M) (remediations can collectively decrease exploitation by 26-75%)
 - □ Low (L) (decrease exploitation by 1-25%)
 - □ None (N) (remediations not available)
 - Not Defined (ND) (skip this metric in calculating the score)

CCSS Environmental Metrics

Local Exploit Level

- Counterpart to General Exploit Level (temporal)
- Scaling factor applied to Exploitability components of the base metric

Local Remediation Level

- Counterpart to General Remediation Level (temporal)
- Scaling factor applied to Exploitability components of the base metric

Local Impact

Several metrics that adjust the base impact metrics

Local Exploit Level

- Local Vulnerability Prevalence (LVP)
 - Prevalence of vulnerable hosts in a specific environment; approximate % of hosts that could be affected by the vulnerability
 - None (N), Low (L), Medium (M), High (H), Not Defined (ND)
- Perceived Target Value (PTV)
 - Likelihood of attack using the configuration issue in an environment relative to vulnerable hosts in other environments
 - □ Low (L), Medium (M), High (H), Not Defined (ND)

Local Remediation Level (LRL)

- Level of protection against a vulnerability within the local IT environment; how widespread mitigation is implemented and how effective the mitigation is
 - \square % decrease in the incidence of exploitation
 - High (H), Medium (M), Low (L), None (N), Not Defined (ND)

Local Impact

- Environment Confidentiality, Integrity, and Availability Impact (EC, EI, EA)
 - Take the place of the corresponding base impact metrics
- Collateral Damage Potential (CDP)
 - □ Augments the Environment Impact metrics
- Confidentiality, Integrity, Availability Requirements (CR, IR, AR)
 - Used to compute scaling factors that are applied to the Environment Impact metrics ³⁷

Environment Impact

- Customize score if the privileges in the environment differ significantly from best practices related to the vulnerability
 - For example, allowing users to run with full, administrator-level privileges
- Environment Confidentiality (EC), Environment Integrity (EI), Environment Availability (EA) Impact metrics
 - Include all the same definitions as the base impact metrics (None, Partial, Complete)
 - Each also includes a Not Defined (ND) value, indicating to skip the metric

Collateral Damage Potential (CDP)

- Measures the potential for loss of life or physical assets through damage or theft of property or equipment, and economic loss of productivity or revenue
- None (N): No potential for physical assets, productivity or revenue damage
- Low (L): Slight damage or loss of revenue or productivity
- Low-Medium (LM): Moderate damage or loss
- Medium-High (MH): Significant damage or loss
- High (H): Catastrophic damage or loss
- Not Defined (ND): No value assigned—skip this metric in calculating the score
- Each organization has to define precisely what "slight", "moderate", "significant", and "catastrophic" mean

CCSS

Security Requirements

- Customize score based on the importance of the targets to the organization in terms of the targets' confidentiality, integrity, and availability
- Confidentiality requirement (CR), integrity requirement (IR), availability requirement (AR): each affects the weight of the corresponding Environment Impact metric

Effect on the organization or associated individuals:
 Low (L): Likely to have only a limited adverse effect
 Medium (M): Likely to have a serious adverse effect
 High (H): Likely to have a catastrophic adverse effect

Not Defined (ND): No value assigned—skip this metric in calculating the score. Default value is Medium.

Links

- NIST Interagency Report 7502 (CCSS) http://csrc.nist.gov/publications/PubsNISTIRs.html# NIST-IR-7502
- NIST NVD CVSS v2 Calculator http://nvd.nist.gov/cvss.cfm?calculator&version=2

Questions?

karen@scarfonecybersecurity.com

Overview of CxSS

- CVSS for software flaw vulnerabilities
- CCSS for security configuration vulnerabilities
- Common Misuse Scoring System (CMSS) for software feature/trust relationship misuse vulnerabilities
- CxSS example—use IM to transfer unwanted files (malware) to the user's host
 - CVSS: Coding flaw in IM client permits such transfers
 - CCSS: IM client is configured to permit such transfers
 - CMSS: Social engineering tricks user into permitting such transfers; user mistakenly accepts transfer request; IM client does not offer a configuration option for restricting transfers